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Abstract

A scalable, parallel code system to perform neutral
particle transport calculations in three dimensions
is presented. To utilize the hyper-cluster architec-
ture of emerging tera scale computers, the parallel
code successfully combines the MPI message passing
and Pthreads paradigms. The code’s capabilities are
demonstrated by a shielding calculation containing
over 14 billion unknowns. This calculation was ac-
complished on the IBM SP “ASCI-Blue-Pacific” com-
puter located at Lawrence Livermore National Labo-
ratory (LLNL).

1 Introduction

The ability to model the transport of neutral par-
ticles such as neutrons and photons through matter
is of importance to many scientific and engineering
activities. Among them are reactor and shielding
design, development of medical radiation treatment
and nuclear well logging applications, just to name a
few. In this work we present a scalable, parallel code
system to perform neutral particle transport calcula-
tions in three dimensions. We are pursuing two ap-
proaches to the simulation of these problems. First,
solutions are sought to the linear steady-state Boltz-
mann transport equation (BTE)(Eq. 1), which is an
integro-differential equation arising in deterministic
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models of neutral particle transport [7] given by,

Q- V(7 Q, E) + o (7, BE))(7, 0, E) =
oo
/ W7, Y, Eos (7, B — E,Q - 0)dQ dE'
0 S2
+4(7, Q, E). (1)
Here, 0 = 0; and o5 denote the total and scatter-
ing cross sections respectively. The discretization
of the phase space variables consists of a discrete
ordinates (S,) collocation in angle, Petrov-Galerkin
finite-element method in space and a multi-group ap-
proximation in energy.

The second approach is to seek solutions to a diffu-
sion approximation to the Boltzmann transport equa-
tion and couple this approximation to a material tem-
perature equation. This system of equations models
transport of particles through optically thick regimes
as well as the thermal coupling of energy between the
particles and the material through which they move.
This system is given by,

%:V.(%Vgs)%—aa <4§B—6), (2)
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where ¢ = (v, 7) is the energy density at frequency
v and position 7 = (z,y,2), T = T(F) is the ma-
terial temperature at position 7, ¢ is time, ¢ is the
speed of light, B = B(T, hv) is the Planck function
at frequency v and temperature 7', p is the material
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Figure 1: 3D wave front for one direction on a
spatially distributed problem domain over 33 =
27 processing nodes

density, C, is the material specific heat, o7 is the
total opacity, o, is the absorption opacity and h is
Planck’s constant. Note that we are not allowing for
scattering effects in this second model at this point
(although we plan to add this physics later); there-
fore, here the total opacity and absorption opacity
are equal. Discretization and solution methods for
this system will be discussed in Section 5.

2 Overview of the Transport
Solution Method

The transport code exploits concurrency with respect
to all phase space variables represented by direction,
position and energy [5]. The parallel execution and
interprocessor communication is performed by calls
to MPI library routines [6], which insures portability
among computing platforms. Solutions to complex
geometries can be obtained, since a powerful geom-
etry package developed for the LLNL code COG [3]
has been integrated with the code system. The ge-
ometry module produces structured Cartesian grids
capable of non-uniform grid spacing. Both Dirichlet
and specular reflection boundary conditions are sup-
ported. Therefore, one can take advantage of existing
problem symmetries. For example, only one eighth
of a domain has to be solved for problems that have
reflection symmetry in all three directions, which is
found in many engineering applications.

To obtain the steady state solution, either source
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Figure 2: Simultaneous sweeps for all 8 octants
on 27 processing nodes

iteration (Richardson Iteration) or a Krylov sub-
space method (the Biconjugate Gradient Stabilized,
BICGSTAB, algorithm) is applied in conjunction
with a sweeping algorithm to solve the discretized
system. Diffusion Synthetic Acceleration (DSA) [1]
is implemented with a parallel semicoarsening multi-
grid algorithm (SMG) [9] in a highly efficient man-
ner, which improves the convergence behavior of the
algorithm significantly in the optically thick regime.
To remedy a fundamental shortcoming of the discrete
ordinates approximation, known as ray effects, a har-
monic projection method has been developed and im-
plemented within the code system. This method al-
lows one to obtain the quality of a spherical harmon-
ics, or Py, solution, while exploiting the efficiency and
better parallelizability of the S, method.

3 3D Sweep Procedure

The sweep procedure is an important part of the over-
all solution algorithm and accounts for 50% of its
runtime. Achieving good performance of a parallel
computer is particularly difficult due to the fact that
a single sweep is a sequential operation.

The phase space variables are dicretized in space by
utilizing Cartesian grids and in angle through discrete
ordinates (S,) collocation. Dependent on boundary
conditions of the problem, either all or subsets (i.e.
all directions belonging to the same octant) of the
angular directions can be swept concurrently.

Domain decomposition is applied to the spatial
grid resulting in a single subgrid which resides on



Figure 3: Measurements on 27 x 4 = 108 proces-
sors of ASCI Blue

a single processing node. Fig. 1 depicts a single 3D
wayve front for one direction on a spatially distributed
problem domain over 3% = 27 processing nodes. As
shown, seven steps are required to propagate the front
from one corner of the domain to its opposite corner.
The degree of concurrency can be increased by start-
ing sweeps simultaneously (problem boundary condi-
tions permitting) from all eight corners, i.e. all eight
octants of the angular space. For 27 processing nodes
this procedure is illustrated in Fig. 2.

For the simultaneous sweeps, the number of sweeps
(i.e. the work load) that a processor has to perform
during a single step is non-uniform. However, if the
per node compute resources would be unlimited, the
entire sweep process for all discrete directions com-
bined would take exactly seven steps. Rather than
enforcing a synchronize procedure which requires all
processing nodes to synchronize at the end of each
step, the code utilizes a data driven algorithm. This
algorithm results in a better utilization of the com-
putation and communication resources and leads ul-
timately to higher parallel efficiencies. Non-blocking
send and receive operations provided by the MPT li-
brary are used to communicate data between neigh-

boring processors during the sweep procedure.

To utilize hyper-cluster architectures, where each
processing node is comprised of a set of processors,
the transport code takes advantage of the multi-
thread paradigm. Using Pthreads [8], each processing
node is computing multiple sweeps concurrently. As-
suming 4 processors per node, the code would start
four independent threads at the beginning of the 3D
sweep procedure. Successively, each thread is obtain-
ing required initial data for any sweep direction that
has not yet been swept, which may require waiting.
As soon as a thread has received the data, it will
start to calculate that particular sweep for which it
received the initial data. After completion of the sin-
gle sweep, the data is sent to the neighbor processing
nodes and the thread is lined up to receive the next
available work order.

In order to study the performance of the 3D sweep-
ing procedure, a rudimentary simulation tool has
been developed which focuses on task dependency,
while communication costs are ignored. The sim-
ulation tool further assumes a uniform spatial dis-
tribution of work among compute nodes (i.e. equal
work). Within these limitations, the tool provides
performance predictions depending on the number of
processing nodes, the layout of processing nodes, the
number of threads per node as well as the order of the
angular approximation. Additionally, various strate-
gies for the sweep procedure can be compared. In
order to validate the simulation tool, the transport
code has been augmented with routines to collect
time stamp information. Actual measurements ob-
tained on the ASCI Blue-Pacific (Fig. 3) and simula-
tion results (Fig. 4) compare favorably. The results
are given for an angular discetization of order Sg, i.e.
80 angular directions. The spatial domain is aligned
with a cubical processor layout, where 108 processors
are arranged in 3% = 27 clusters of 4 processors each.

The effect of higher S, / P, approximations on the
parallel efficiency of the code for hyper-clusters of var-
ious processor/cluster configurations is given in Ta-
ble 1. A transport calculation utilizing a Py approx-
imation with 968 angular directions has a predicted
efficiency that is more than twice the efficiency of a
calculation using a Sg approximation, which contains
80 directions.

The simulations further show, that while domain
decomposition in direction is supported by the trans-
port code a directional decomposition is not advis-
able for computations on hyper-clusters. In order to
obtain the highest efficiencies, each processing node



Sn / Pn Order | Threads | Steps | Efficiency
Ss 1 89 90%
Ss 4 27 74%
Sg 12 13 51%
Sg 16 12 42%
Py 1 977 99%
Py, 4] 249 97%
Ps 12 88 92%
Ps 16 67 90%
Table 1: Predicted efficiencies for 3% = 27 pro-

cessing nodes.

should be responsible for all angular directions.

4 Shielding Calculation of the
Nova Target Chamber

The code’s capabilities are demonstrated by a shield-
ing calculation containing over 14 billion unknowns.
This calculation was accomplished on the IBM SP
“ASCI-Blue-Pacific” computer located at LLNL. The
ASCI-Blue-Pacific computer manufactured by IBM
[10] is a Hyper-Cluster of 1,464 “Silver” processing
nodes. Each node is a four-way shared memory multi
processor (SMPs) with either 1.5 or 2.5 gigabytes of
memory for a total of 2.6 terabytes. Global and lo-
cal disk space accounts to 62.5 and 17.3 terabytes
respectively. The full machine consists of three 488-
node sectors with a peak speed of 3.9 TFLOPS. The
shielding calculation was carried out on two of the
three sectors.

The purpose of this calculation is to simulate the
flux of fusion neutrons that comes out of the Nova
laser target chamber. The neutrons are produced by
the fusion of Deuterium-Tritium gas. In order to pro-
tect the experimentalists from the harmful effects of
the neutrons, building engineers need to know the
distribution of neutron flux so that they can design
the appropriate shielding structures into the build-
ing. The fusion neutrons can be very penetrating
when they emerge from the target chamber because
they are born at a very high energy (14.1 MeV). Even
though the target chamber is packed with experimen-
tal equipment that can absorb the neutrons or scat-
ter them into other directions, there are directions in
the target chamber with large voids, and this allows

Figure 4: Simulation results for 27 x 4 = 108
Processors

the neutrons to pass through relatively freely. It is
in these directions that the high-energy neutrons can
be dangerous if not absorbed in a shield. These di-
rections show up clearly in our calculations (Fig. 5).

5 Overview of the Solution
Method for Diffusion

The solution method for the diffusion approxima-
tion is fully described in [2]. We briefly overview it
here. The discretization of equations (2)—(3) consists
of cell-centered differences in space and multi-group
approximation in energy. Note that we have impl-
mented parallelism in space. In order to allow large
time steps, we use an implicit formulation of the equa-
tions and apply ODE time integration techniques. In
particular, we use the PVODE package [4] developed
at LLNL which implements a variant of the Backward
Differentiation Formula for time integration.

With these discretizations, there is a coupled sys-
tem of discrete, nonlinear equations which must be
solved at each time step. We use an inexact Newton-



Figure 5: The Nova target chamber. Isosurfaces in the figure display a cut-away view of the interior
of the chamber. In particular, the target assembly is shown along with the interior geometry of the
chamber. The colors on the isosurfaces (reproduced here in grey-scale) represent neutron scalar

flux values for the most energetic neutrons.

Krylov method in the context of ODE integrators to
solve these systems. Newton’s method is used here
because of its fast, robust convergence for nonlinear
systems. The Krylov method is used to solve the
linear Jacobian systems which arise for each Newton
iteration. Krylov methods are particularly useful in
this situation since only the action of the Jacobian
matrix on a vector is needed. This action can be
approximated by taking differences of the nonlinear
function representing the discrete nonlinear system
as in,

F(u+ 6v) — F(u)
) I, (@

where 6 is a scalar. Thus, only the implementation of
the nonlinear function is necessary, and matrix entries
need never be formed or stored.

F'(u)v =

As our Krylov solver, we use GMRES for its ro-
bust convergence. However, convergence with GM-
RES may be slow or stagnated at times, and so we
precondition the Jacobian systems. We impose an or-
dering of unknowns first by energy and then by space
within each energy group. Equations are ordered in
a similar manner. Given this ordering, the Jacobian
has diagonal blocks consisting of discrete diffusion
operators and a contribution from local physics for
the blocks corresponding to the energy equations and
a diagonal block corresponding to the temperature
equation. This last block is easily inverted. We ap-
ply a block Jacobi preconditioner to these Jacobian
Systems where the blocks from the energy equations
are inverted using the semicoarsening multigrid algo-
rithm of Schaffer [9].



6 Scalability of the Diffusion
Approximation

Our studies have shown that the solution method we
employ for the diffuison approximation shows both
algorithmic scalability as well as parallel scalability
[2]. Tests on a one-dimensional Marshak problem
show that the method requires a fairly constant num-
ber of nonlinear iterations per time step and a con-
stant number of linear iterations per nonlinear iter-
ation as the spatial mesh is increased from 200 to
25,600 points. Thus, as more unknowns are added,
the solvers require about the same number of itera-
tions, indicating algorithmic scalability. Also, as the
number of unknowns is doubled, the total sequential
compute time approximately doubles, indicating im-
plementation scalability.

To test for parallel scalability, we looked at a three-
dimensional version of the Marshak test problem and
added more unknowns by keeping 50° spatial zones
(250,000 unknowns) on a processor and going from 1
to 128 processors on the IBM SP2 (Technical Refresh)
machine at LLNL. We saw a scaled efficiency of about
50% for 128 processors for the full run. Looking at
the ratio of time for the linear iteration to the time
for the full run, we saw a scaled efficiency of the linear
iterations of 72%.

7 Conclusion

Large transport calculations are routinely performed
on clusters of SUN workstations, DIGITAL Alpha
Clusters and IBM SP computers. Previous imple-
mentations included the Meiko CS-2 and the Cray
Research T3D. The transport code combines multi-
threading with massage passing, while preserving the
efficient sweeping algorithm of the code, i.e. a data
driven, 3D sweep procedure. A simulation tool has
been developed to study performance issues. Com-
parison between actual measurements obtained with
the threaded code on “ASCI-Blue-Pacific” and sim-
ulation results show a high level of agreement. This
agreement enables us to predict code performance on
future parallel architectures which will feature larger
numbers of processors per node and further increases
in the number of compute nodes. We have also shown
both, algorithmic and parallel implementation scala-
bility for a diffusion approximation. Currently, we
are using time integration techniques from the diffu-
sion approximation to extend our transport solution

method to the time-dependent BTE.
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